Hexadecimal to Decimal Conversion
Hexadecimal number is a number expressed in the base 16 numeral system. Hexadecimal number's digits have 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Each digit of a hexadecimal number counts a power of 16.
Hexadecimal number example:
62C16 = 6×162 + 2×161 + 12×160 = 158010
Decimal number is a number expressed in the base 10 numeral system. Decimal number's digits have 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Each digit of a decimal number counts a power of 10.
Decimal number example:
65310 = 6×102 + 5×101 + 3×100 = 65310
How to Convert Hexadecimal to Decimal
A regular decimal number is the sum of the digits multiplied with power of 10.
Hex numbers are read the same way, but each digit counts power of 16 instead of power of 10.
For hex number with n digits:
dn-1 ... d3 d2 d1 d0
Multiply each digit of the hex number with its corresponding power of 16 and sum:
decimal = dn-1×16n-1 + ... + d3×163 + d2×162 + d1×161 + d0×160
Example
Understanding Hexadecimal-to-Decimal Conversion
Hexadecimal-to-decimal conversion involves converting numbers in hexadecimal (base 16) into their equivalent decimal (base 10) values. Hexadecimal uses digits 0-9 and letters A-F to represent values from 0 to 15, while decimal uses digits 0-9.
The general approach to converting hexadecimal numbers to decimal includes:
- Write down the hexadecimal number.
- Assign powers of 16 to each digit based on its position (rightmost digit is \(16^0\), next is \(16^1\), and so on).
- Multiply each digit by \(16^n\), where \(n\) is the position of the digit, starting from 0.
- Add the results to get the decimal equivalent.
Steps for Hexadecimal-to-Decimal Conversion
Step 1: Write down the hexadecimal number.
Step 2: Assign powers of 16 to each digit starting from the rightmost digit.
Step 3: Multiply each digit by \(16^n\), where \(n\) is the positional power.
Step 4: Add all the results to get the decimal equivalent.
Example: Converting Hexadecimal to Decimal
Convert \( 2F \) to decimal:
- Step 1: Write the hexadecimal number \( 2F \).
- Step 2: Assign powers of 16:
- \( F = 15 \) at \(16^0\)
- \( 2 = 2 \) at \(16^1\)
- Step 3: Multiply each digit by \(16^n\):
- \( F \times 16^0 = 15 \times 1 = 15 \)
- \( 2 \times 16^1 = 2 \times 16 = 32 \)
- Step 4: Add the results: \( 32 + 15 = 47 \).
- Final decimal result: \( 47 \).
Conversion Table for Quick Reference
Here is a quick reference for hexadecimal digits and their decimal equivalents:
- 0 → 0
- 1 → 1
- 2 → 2
- 3 → 3
- 4 → 4
- 5 → 5
- 6 → 6
- 7 → 7
- 8 → 8
- 9 → 9
- A → 10
- B → 11
- C → 12
- D → 13
- E → 14
- F → 15
Applications of Hexadecimal-to-Decimal Conversion
Hexadecimal-to-decimal conversion is commonly used in:
- Understanding memory addresses in computing systems.
- Converting color codes (e.g., in HTML and CSS).
- Interpreting machine-level data in programming and debugging.
Practice Problem
Convert \( 3A \) to decimal:
- Solution:
- \( A = 10 \) at \(16^0\)
- \( 3 = 3 \) at \(16^1\)
- Multiply and add:
- \( A \times 16^0 = 10 \times 1 = 10 \)
- \( 3 \times 16^1 = 3 \times 16 = 48 \)
- \( 48 + 10 = 58 \).
- Final decimal result: \( 58 \).
Problem Type | Description | Steps to Solve | Example |
---|---|---|---|
Basic Conversion | Converting a single hexadecimal digit to its decimal equivalent. |
|
For A :
|
Handling Larger Numbers | Converting a multi-digit hexadecimal number to decimal. |
|
For 3A7 :
|
Verifying Conversion | Checking the accuracy of hexadecimal-to-decimal conversion. |
|
For 935 :
|
Handling Special Cases | Converting hexadecimal numbers with letters (A-F) to decimal. |
|
For FE :
|
Applications | Understanding where hexadecimal-to-decimal conversion is used. |
|
Example: Converting hexadecimal memory address 1A3F to decimal for clarity:
|